Functional redundancy of worm spliceosomal proteins U1A and U2B''.
نویسندگان
چکیده
In Caenorhabditis elegans, the small nuclear ribonucleoprotein (snRNP)-associated proteins U1A and U2B'' are approximately 50% identical to each other, and neither bears signature characteristics of mammalian U1A or U2B'' or the single Drosophila homolog, SNF. We show here that the genes that encode these proteins (rnp-2 and rnp-3) are cotranscribed in an operon, and that ribonucleoprotein RNP-2 is U1 snRNP-associated (U1A) whereas RNP-3 is U2 snRNP-associated (U2B''). U2B'' interacts with U2 even in the absence of another U2 snRNP protein, U2A'. Like U1A and U2B'' from yeast, plants, and vertebrates, worm U1A and U2B'' are more similar to each other than they are to other U1A or U2B'' proteins, respectively. Even though U1A and U2B'' interact with different snRNPs, they are functionally redundant; knockout of both is required for a lethal phenotype. Interestingly, U1A associates with U2 RNA when U2B'' is deleted. Thus, the two members of this gene family normally function as components of different snRNPs but apparently remain capable of performing the function of the other. Redundancy results from the fact that one protein can substitute for the other, even though it normally does not.
منابع مشابه
Resurrection of an Urbilaterian U1A/U2B″/SNF protein.
The U1A/U2B″/SNF family of proteins found in the U1 and U2 spliceosomal small nuclear ribonucleoproteins is highly conserved. In spite of the high degree of sequence and structural conservation, modern members of this protein family have unique RNA binding properties. These differences have necessarily resulted from evolutionary processes, and therefore, we reconstructed the protein phylogeny i...
متن کاملFunctional analysis of SNF, the Drosophila U1A/U2B" homolog: identification of dispensable and indispensable motifs for both snRNP assembly and function in vivo.
In Drosophila, the spliceosomal protein SNF fulfills the functions of two vertebrate proteins, U1 snRNP-UlA and U2 snRNP-U2B". The structure and sequence of SNF, U1A, and U2B" are nearly identical with two RNA recognition motifs (RRM) separated by a short linker region, yet they have different RNA-binding properties: U1A binds U1 snRNA, U2B" binds U2 snRNA, and SNF binds both snRNAs. Structure/...
متن کاملFunctional stabilization of an RNA recognition motif by a noncanonical N-terminal expansion.
RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side...
متن کاملAn Atp-Dependent, Ran-Independent Mechanism for Nuclear Import of the U1a and U2b′′ Spliceosome Proteins
Nuclear import of the two uracil-rich small nuclear ribonucleoprotein (U snRNP) components U1A and U2B" is mediated by unusually long and complex nuclear localization signals (NLSs). Here we investigate nuclear import of U1A and U2B" in vitro and demonstrate that it occurs by an active, saturable process. Several lines of evidence suggest that import of the two proteins occurs by an import mech...
متن کاملClimbing the vertebrate branch of U1A/U2B″ protein evolution.
In the vertebrate lineage of the U1A/U2B″/SNF protein family, the U1A and U2B″ proteins bind to RNA stem-loops in the U1 or U2 snRNPs, respectively. However, their specialization is fairly recent, as they evolved from a single ancestral protein. The progress of their specialization (subfunctionalization) can be monitored by the amino acid sequence changes that give rise to their modern RNA-bind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 23 شماره
صفحات -
تاریخ انتشار 2007